Inorg. Chem. 2004, 43, 2157–2165

(Bis(1,2,4-triazol-1-yl)methane)silver(I) Phosphino Complexes: Structures and Spectroscopic Properties of Mixed-Ligand Coordination Polymers

Effendy,^{†,‡} Fabio Marchetti,[§] Claudio Pettinari,^{*,§} Riccardo Pettinari,[§] Massimo Ricciutelli,[§] Brian W. Skelton,[‡] and Allan H. White[‡]

Jurusan Kimia, FMIPA Universitas Negeri Malang, Jalan Surabaya 6, Malang, Indonesia 65145, Department of Chemistry, The University of Western Australia, Crawley, WA 6009, Australia, and Dipartimento di Scienze Chimiche, Università degli Studi di Camerino, via S. Agostino 1, 62032 Camerino MC, Italy

Received November 19, 2003

Adducts of the ligand bis(1,2,4-triazol-1-yl)methane (tz₂(CH₂)) of the form AgX:tz₂(CH₂):ER₃:MeCN (1:1:1:*x*) (X = NO₃, R = Ph, E = P, As, or Sb, *x* = 1 or 2; X = NO₂, ClO₄, O₃SCF₃, E = P, R = Ph, *x* = 0, 1 or 2; X = NO₃, ClO₄, E = P, R = cy, *x* = 1; X = ClO₄, E = As, R = Ph, *x* = 2) and AgNO₃:tz₂(CH₂):P(*o*-tolyl)₃ (2:2:1) have been synthesized and characterized in the solid state and in solution by analyses, spectral (IR, far-IR, ¹H and ¹³C NMR, ESI MS data) data, and conductivity measurements. In the one-dimensional polymers (characterized by X-ray studies) AgNO₃:tz₂(CH₂):PPh₃:CH₃CN (1:1:1:1), AgCIO₄:tz₂(CH₂):PPh₃:CH₃CN (1:1:1:2), AgNO₃:tz₂(CH₂):AsPh₃: CH₃CN (1:1:1:2), and AgNO₃:tz₂(CH₂):SbPh₃:CH₃CN (1:1:1:2), the silver atom can be regarded as four-coordinate, the tz₂(CH₂) ligands behaving as bridging groups rather than chelates, with no pair of ligands being dominant, quasi-trans, in their interactions. The AgNO₃:tz₂(CH₂):P(*o*-tolyl)₃ (2:2:1) adduct is a two-dimensional polymer containing two independent silver atoms, one four-coordinated unsymmetrically by a pair of triazolyl rings, one P(*o*-tolyl)₃, and a unidentate nitrate and the second by a quasi-symmetrical O₂NO chelate and a pair of equivalent triazolyl rings.

Introduction

The replacement of the pyrazole ring in the poly(pyrazolyl)borates, also known as Trofimenko's ligands,¹ by triazole,² imidazole,³ benzotriazole,⁴ or 1-methyl-2-mercaptoimidazole⁵ has led to new scorpionates capable of bridging

- [‡] University of Western Australia.
- [§] Università di Camerino.
- Trofimenko, S. Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands; Imperial College Press: London, 1999. Trofimenko, S. Chem. Rev. 1993, 93, 943–980.
- (2) Janiak, C.; Scharmann, T. G.; Green, J. C.; Parkin, R. P. G.; Kolm, M. J.; Riedel, E.; Mickler, W.; Elguero, J.; Claramunt, R. M.; Sanz, D. Chem.-Eur. J. 1996, 2, 992–1000.
- (3) Zaidi, S. A. A.; Khan, T. A. Synth. React. Inorg. Met.-Org. Chem. 1984, 14, 717-729. Janiak, C.; Temidzemir, S. Rohr, C. Z. Anorg. Allg. Chem. 2000, 626, 1265-1267.
- (4) Lalor, F. J.; Miller, S.; Garvey, N. Polyhedron 1990, 9, 63-68.
- (5) Reglinski, J.; Garner, M.; Cassidy, I.; Slavin, P. A.; Spicer, M. D.; Armstrong, D. J. Chem. Soc., Dalton Trans. 1999, 2119–2126. Garner, M.; Reglinski, J. Cassidi, I.; Spicer, M. D.; Kennedy, A. J. Chem. Soc., Chem. Commun. 1996, 1975–1976.

10.1021/ic0353413 CCC: \$27.50 © 2004 American Chemical Society Published on Web 02/17/2004

between different metal centers, yielding dimers or coordination polymers exhibiting unusual spectroscopic and structural features. Some of these new ligands offer promise for the synthesis of one-dimensional chain compounds based on metal complexes employed in the development of functional materials as molecular magnets,⁶ ferroelectrics,⁷ and nonlinear optics materials.⁸ Poly(triazolyl)borates, for example, have been shown to yield new possibilities for supramolecular architecture in the solid state, with the incorporation of two-dimensional water layers and linkage isomerism.⁹ We have recently reported some interesting single-strand silver-(I) coordination polymers containing bridging poly(imidazolyl)borates¹⁰ and some polynuclear copper(I) phosphino species containing bridging poly(triazolyl)borates.¹¹

- (6) Caneschi, A.; Gatteschi, D.; Renard, J. P., Rey, P.; Sessoli, R. Inorg. Chem. 1989, 28, 3314–3319.
- (7) Chen, C. T.; Suslick, K. S. Coord. Chem Rev. 1993, 128, 293– 322.
- (8) Chiang, W.; Ho, D. M.; Engen, D. V.; Thompson, M. E. Inorg. Chem. 1993, 32, 2886–2893.
- (9) Janiak, C.; Scharmann, T. G.; Hemling, H.; Lentz, D.; Pickardt, J. Chem. Ber. 1995, 128, 235–244.

^{*} To whom correspondence should be addressed. E-mail: claudio. pettinari@unicam.it. Telephone: 0039 0737 402234. Fax: 0039 0737 637345.

[†] Universitas Negeri Malang.

Table 1. Selected ESI MS Data for Derivatives 1-4 and 6-10

compd	(MeCN)Ag ⁺	(MeCN) ₂ Ag ⁺	(ER ₃)(MeCN)Ag ⁺	$(ER_3)(tz_2CH_2)Ag^+$	$(ER_3)_2Ag^+$	$(ER_3)_2Ag_2(X)^+$	X^-	$Ag(X)_2^-$	Ag ₂ (NO ₃) ₃ -
1	147.9 (8)	188.9 (58)	410.0 (100)	520 (10)	630.8 (45)	801.7 (10)	62.2 (100)	230.9 (30)	401.6 (10)
2		188.9 (20)	501 (100)	611 (10)	814.8 (90)		62.2 (100)	230.9 (30)	401.6 (10)
3			455 (75)		721 (100)	889 (10)	62.2 (100)	230.9 (30)	401.6 (10)
4	147.9 (5)	188.9 (10)	410.0 (100)	520 (15)	630.8 (65)		99 (100)	306.7 (10)	
6					630.8 (100)				
7			429 (100)	538 (10)	668 (90)	838 (10)	62.2 (100)	230.9 (70)	
8			429 (100)	538 (5)	668 (60)	838 (2)	99 (100)	306.7 (5)	
9		189 (10)	454 (100)	565 (10)	721 (90)		99 (100)	306.7 (10)	
10		189 (5)	454 (100)	564 (10)	716 (40)	885 (8)	62.2 (100)	230.9 (30)	

The replacement of pyrazole rings in poly(pyrazoly)alkanes by 1,2,4-triazole and tetrazole has also been reported,¹² but the coordination chemistry of poly(triazol-1yl)- or poly(tetrazolyl)alkanes is surprisingly underdeveloped. Li¹³ and Reedijk¹⁴ have recently demonstrated that bis(1,2,4triazol-1-yl)alkanes coordinate with copper atoms through exo-nitrogen atoms on the triazole ring to yield 1-D or 2-D coordination polymers, whereas Tang and co-workers found that (3,5-Me₂tz)₂CH₂ coordinates to tin atoms through exodentate nitrogen atoms at the 4-positions of the triazole rings to form linkage coordination polymers.¹⁵ More recently Tang has reported the synthesis of group 6 metal derivatives of $(3,5-Me_2tz)_2CH_2$ and their reaction with diorganotin(IV) halides.¹⁶ We have previously reported that $tz_2(CH_2)$ is able to coordinate silver(I) salts through the nitrogen atoms vielding two- and three-dimensional coordination polymers,¹⁷ and we have now extended this work to the investigation of complexes of $tz_2(CH_2)$ with AgX in the presence of competitor P-, N-, or S-donor ligands, to build new coordination polymers with different solid-state structures and properties. Here we describe our results showing the nature of the interaction of $tz_2(CH_2)$ with AgX (X = NO₃, NO₂, ClO_4 , O_3SCF_3) in the presence of tertiary P-donors such as PPh₃, Pcy₃, or P(o-tolyl)₃.

Experimental Section

General Procedures. All reactions were carried out protected from light under an atmosphere of dry oxygen-free dinitrogen, using standard Schlenk techniques. Solvents were used as supplied or distilled by using standard methods. All chemicals were purchased from Aldrich (Milwaukee, WI) and used as received. The donor $tz_2(CH_2)$ was synthesized by the procedure previously reported¹⁸

- (10) Effendy; Gioia Lobbia, G.; Pellei, M.; Pettinari, C.; Santini, C.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 2001, 528–534.
- (11) Gioia Lobbia, G.; Pellei, M.; Pettinari, C.; Santini, C.; Skelton, B. W.; Somers, N.; White, A. H. J. Chem. Soc., Dalton Trans. 2002, 2333–2340.
- (12) Trofimenko, S.; J. Am. Chem. Soc. 1967, 89, 3170-3177. Julia, S.;
 Sala, P.; Mazo, J. D.; Sancho, M.; Ochoa, C.; Elguero, J.; Fayet, J.
 P.; Vertut, M. C. J. Heterocycl. Chem. 1982, 19, 1141-1145.
- (13) Li, B.; Xu, Z.; Cao, Z.; Zhu, L.; Yu, K. Transition Met. Chem. 1999, 24, 622–627.
- (14) Van Albada, G. A.; Guijt, R. C.; Haasnoot, J. G.; Lutz, M.; Spek, A. L.; Reedijk, J. Eur. J. Inorg. Chem. 2000, 121–126.
- (15) Tang, L.-F.; Wang, Z.-H.; Chai, J.-F.; Jia, W.-L.; Xu, Y.-M.; Wang, J.-T. *Polyhedron* **2000**, *19*, 1949–1954.
- (16) Tang, L.-F.; Wang, Z.-H.; Chai, J.-F.; Leng, X.-B.; Wang, J.-T.; Wang, H.-G. J. Organomet. Chem. 2002, 642, 179–185.
- (17) Effendy; Marchetti, F.; Pettinari, C.; Pettinari, R.; Skelton, B. W.; White, A. H. *Inorg. Chem.* 2003, 42, 112–117.
- (18) Gioia Lobbia, G.; Bonati, F.; Cingolani, A.; Leonesi, D.; Lorenzotti, A. Synth. React. Inorg. Met.-Org. Chem. 1988, 18, 535–550. Pettinari, C. Main Group Met. Chem. 1996, 19, 489–498.

and purified by several recrystallizations from chloroform/hexane. Solvents were dried by standard techniques. The samples were dried in vacuo to constant weight (20 °C, ca. 0.1 Torr). Elemental analyses (C, H, N, S) were performed with a Fisons Instruments 1108 CHNS-O elemental analyzer. IR spectra were recorded from 4000 to 100 cm⁻¹ with a Perkin-Elmer System 2000 FT-IR instrument. ¹H, ³¹P, and ¹³C NMR spectra were recorded on a VXR-300 Varian spectrometer operating at room temperature (300 MHz for ¹H, 121.4 MHz for ³¹P, and 75 MHz for ¹³C). H and C chemical shifts are reported in ppm vs SiMe₄, and P chemical shifts in ppm vs H₃PO₄ 85%. The electrical conductances of the acetone and acetonitrile solutions were measured with a Crison CDTM 522 conductimeter at room temperature. Positive and negative electrospray mass spectra were obtained with a Series 1100 MSI detector HP spectrometer, using an acetonitrile mobile phase. Solutions (3 mg/mL) for electrospray ionization mass spectrometry (ESI-MS) were prepared using reagent grade acetone or acetonitrile. For the ESI-MS data, masses and intensities were compared to those calculated by using the IsoPro isotopic abundance simulator version 2.1;¹⁹ peaks containing silver(I) ions are identified as the centers of isotopic clusters. Selected ESI-MS data are reported in Table 1.

Syntheses of Complexes. AgNO₃:tz₂(CH₂):PPh₃:MeCN (1:1: 1:1) (1). To a solution of $tz_2(CH_2)$ (0.15 g, 1.0 mmol) in acetonitrile (30 mL), were added AgNO₃ (0.17 g, 1 mmol) and PPh₃ (0.26 g, 1 mmol) simultaneously. The mixture was stirred to reflux for 24 h and then cooled and left at 4 °C until a colorless crystalline solid was formed, which was filtered off and dried to constant weight under reduced pressure (0.44 g, 0.7 mmol, 70% yield). The material is soluble in dmso, acetone, acetonitrile, and chlorinated solvents. Mp: 155-160 °C. Anal. Calcd for C₂₅H₂₄AgN₈O₃P: C, 48.17; H, 3.88; N, 17.98. Found: C, 48.12; H, 3.77; N, 17.83. Λ_m (CH₃CN, 1.0×10^{-3} M, 298 K): 135 Ω^{-1} cm² mol⁻¹. IR (Nujol, cm⁻¹): 3130 m, 3078 w, 3054 w, v(C_{arom}-H); 2287 w, 2250 m, v(CN); 1523 m, 1513 s, $\nu(C - N + C - C)$; 520 s, 500 vs, 432 m, 404 m, 398 sh, 377 w, 278 w, 254 w, 228 w, 205 w. ¹H NMR (CDCl₃): δ 2.18 (s, 3H, CH₃CN), 6.49s (2H, CH₂), 7.30-7.55m br (15H, PC₆H₅), 7.97s (2H, H₅), 8.53s (2H, H₃). ¹³C{¹H} NMR (CDCl₃): δ 2.1 (CH₃CN), 59.8 s (CH₂), 118.0 s (CH₃CN), 129.3 d (³J_{P-C}: 9.1 Hz, C_m of PPh₃), 130.8 s (C_p of PPh₃), 131.4 d (¹J_{P-C}: 29.6 Hz, C_i of PPh₃), 133.9 d (${}^{2}J_{P-C}$: 16.3 Hz, C₀ of PPh₃), 144.6 s (C₅), 153.0 s (C₃). ³¹P{¹H} NMR (CDCl₃, 293 K): δ 12.5 br, 10.1 br. ³¹P{¹H} NMR (CDCl₃, 218 K): δ 12.7 dd (¹J(³¹P-¹⁰⁹Ag), 659.7 Hz; ¹*J*(³¹P-¹⁰⁷Ag), 575.4 Hz), 10.4 dd (¹*J*(³¹P-¹⁰⁹Ag), 518.1 Hz; ${}^{1}J({}^{31}P-{}^{107}Ag), 451.0$ Hz).

AgNO3:tz₂(CH₂):SbPh₃:MeCN (1:1:1:2) (2). Compound **2** was synthesized by the same procedure reported for **1** (0.68 g, 0.9 mmol, 90% yield). It is very soluble in dmso and slightly soluble in acetone and acetonitrile. Mp: 196-203 °C. Anal. Calcd for C₂₇H₂₇-AgN₉O₃Sb: C, 42.94; H, 3.60; N, 16.69. Found: C, 42.75; H, 3.55;

⁽¹⁹⁾ Senko, M. W. IsoPro Isotopic Abundance Simulator, v. 2.1; National High Magnetic Field Laboratory, Los Alamos National Laboratory: Los Alamos, NM.

New Coordination Polymers from tz₂(CH₂)

N, 16.46. $\Lambda_{\rm m}$ (CH₃CN, 10⁻³ M, 298 K): 126 Ω^{-1} cm² mol⁻¹. IR (Nujol, cm⁻¹): 3130 w, 3105 w, ν (C_{arom}-H); 2290 br, 2250 br, ν (CN); 1573 w, 1514 w, 1505 s, ν (C····N + C···C); 454 s, 404 w, 378 s, 365 w, 303 w, 280 m, 262 s, 224 m. ¹H NMR (DMSO-*d*₆): δ 2.05 (s, 6H, *CH*₃CN), 6.68 s (2H, *CH*₂), 7.50 m br (15H, SbC₆*H*₅); 8.08 s (2H, *H*₅); 8.89 s (2H, *H*₃). ¹³C{¹H} NMR (DMSO-*d*₆): δ 59.2s (*CH*₂), 129.4 s, 129.9 s, 133.2 s, 135.6 s (SbC₆H₅), 145.4 s (*C*₅), 152.4 s (*C*₃).

AgNO3:tz₂(CH₂):AsPh₃:MeCN (1:1:1:2) (3). Compound **3** was synthesized by the same procedure reported for **1** in 93% yield (0.65 g, 0.93 mmol). Mp: 202–205 °C. It is soluble in dmso and slightly soluble in acetonitrile. Anal. Calcd for C₂₇H₂₇AgAsN₉O₃: C, 45.78; H, 3.84; N, 17.80. Found: C, 45.87; H, 3.68; N, 17.65. $\Lambda_{\rm m}$ (CH₃CN, 10⁻³ M, 298 K): 123 Ω^{-1} cm² mol⁻¹. IR (Nujol, cm⁻¹): 3097 w, ν (C_{arom}-H); 2287 w, 2250 m, ν (CN); 1579 w, 1557 w, 1506 s, ν (C $\stackrel{\dots}{\leftarrow}$ N + C $\stackrel{\dots}{\leftarrow}$ C); 481 m, 468 vs, 418 w, 397 m, 377 w, 334 m, 320 sh, 316 s, 280 w, 265 w, 253 w, 247 w. ¹H NMR (DMSO-*d*₆): δ 2.06 (s, 6H, CH₃CN), 6.67 s (2H, CH₂), 7.55 m br (15H, AsC₆H₅), 8.07 s (2H, H₅), 8.87 s (2H, H₃). ¹³C{¹H} NMR (DMSO-*d*₆): δ 59.1 s (CH₂), 129.5 s, 130.3 s, 133.0 s, 134.2 s (AsC₆H₅), 145.4 s (C₅), 152.4 s (C₃).

AgClO₄:tz₂(CH₂):PPh₃:MeCN (1:1:1:2) (4). Compound 4 was synthesized by the same procedure reported for 1. It is soluble in dmso, acetone, acetonitrile, and chlorinated solvents and was recrystallized from MeCN (0.31 g, 0.45 mmol, 45% yield). Mp: 205-210 °C. Anal. Calcd for C₂₇H₂₇AgClN₈O₄P: C, 46.29; H, 3.88; N, 15.97. Found: C, 46.43; H, 3.88; N, 16.21. $\Lambda_{\rm m}$ (CH₃CN, 10⁻³ M, 298 K): 83 Ω^{-1} cm² mol⁻¹. IR (Nujol, cm⁻¹): 3123 m, 3024 w, v(Carom-H); 2252 w, 2177 w (CN); 1585 s, 1570 w, 1555 w, 1514 vs, $\nu(C - N + C - C)$; 1136 vs, 1085 s br, 1025 s, $\nu_3(ClO_4)$; 623 vs, v₄(ClO₄); 543 w, 521 s, 503 vs, 492 s, 444 m, 425 s, 394 s, 303 w, 281 w, 257 m, 224 m, 210 s. ¹H NMR (CDCl₃, 293 K): δ 2.02, 2.18 (2s, 6H, CH₃CN), 6.45 s (2H, CH₂), 7.20-7.50 m br (15H, PC_6H_5), 7.92 s (2H, H_5), 8.46 s (2H, H_3). ¹³C{¹H} NMR (CDCl₃): δ 2.0 br (CH₃CN), 59.9 s (CH₂), 114.0 (s, CN), 118.0 (s, CN), 129.1 d (³J_{P-C}: 9.7 Hz, m-C of PPh₃), 130.5 s (p-C of PPh₃), 132.0 d (${}^{1}J_{P-C}$: 29.1 Hz, *i*-C of PPh₃), 134.2 d (${}^{2}J_{P-C}$: 16.3 Hz, o-C of PPh₃), 144.4 s (C₅), 153.2 s (C₃). ³¹P{¹H} NMR (CDCl₃, 293 K): δ 9.3 s. ³¹P{¹H} NMR (CDCl₃, 218 K): δ 9.4 dd (¹*J*(³¹P-¹⁰⁹Ag), 457.1 Hz; ¹*J*(³¹P-¹⁰⁷Ag), 397.9 Hz) 8.4 d br $({}^{1}J({}^{31}P - {}^{107/109}Ag), 418.1 \text{ Hz}), 4.7 \text{ s br.}$

AgO₃SCF₃:tz₂(CH₂):PPh₃ (1:1:1) (5). Compound 5 was synthesized by the same procedure reported for 1 and was recrystallized from chloroform-diethyl ether (0.49 g, 0.74 mmol, 74% yield). It is soluble in dmso, acetone, acetonitrile, and chlorinated solvents. Mp: 240–246 °C. Anal. Calcd for C₂₄H₂₁AgF₃N₆O₃PS: C, 43.07; H, 3.16; N, 12.56; S, 4.79. Found: C, 42.82; H, 3.30; N, 12.37; S, 4.68. $\Lambda_{\rm m}$ (CH₃CN, 10⁻³ M, 298 K): 107 Ω^{-1} cm² mol⁻¹. IR (Nujol, cm⁻¹): 3128 w, v(C_{arom}-H); 1653 w, 1569 w, 1556 w, 1519 m, ν (C····N + C···C); 592 w, 579 m, 568 m br, 559 w, 551 w, 543 m, 519 s, 499 s, 491 s, 469 m, 460 w, 449 w, 439 w, 433 m, 422 w, 415 w, 410 w, 397 m. ¹H NMR (CDCl₃): δ 6.45s (2H, CH₂), 7.30-7.50 m br (15H, PC₆ H_5), 7.97 s (2H, H_5), 8.45 s (2H, H_3). ¹³C{¹H} NMR (CDCl₃, 295 K): δ 59.8 s (CH₂), 129.4 d (³J_{P-C}: 9.8 Hz, C_m of PPh₃), 131.0 s (C_p of PPh₃), 131.3 d (${}^1J_{P-C}$: 24.6 Hz, C_i of PPh₃), 133.7 d (²*J*_{P-C}: 16.3 Hz, C_o of PPh₃), 144.9 s (*C*₅), 152.7 s (C₃). ³¹P{¹H} NMR (CDCl₃, 293 K): δ 11.4 s. ³¹P{¹H} NMR (CDCl₃, 218 K): δ 9.4 d br, 5.9 br, 4.8 br.

AgNO₂:tz₂(CH₂):PPh₃ (1:1:1) (6). Compound 6 was synthesized by the same procedure reported for 1. It was recrystallized from CH₃CN (0.37 g, 0.65 mmol, 65% yield). It is soluble in dmso, acetone, acetonitrile, and chlorinated solvents. Mp: 115-121 °C. Anal. Calcd for C₂₃H₂₁AgN₇O₂P: C, 48.78; H, 3.74; N, 17.31. Found: C, 48.82; H, 3.87; N, 17.18. Λ_m (CH₃CN, 1.0×10^{-3} M, 298 K): 15 Ω^{-1} cm² mol⁻¹. IR (Nujol, cm⁻¹): 3111 w, ν (C_{arom}-H); 2250 br (CN), 1557 w, 1506 s, ν (C \cdots N + C \cdots C); 543 w, 512 s, 502 vs, 492 s, 438 m, 430 w, 424 w, 398 m, 310 w, 271 w, 254 w, 233 w. ¹H NMR (CD₃CN): δ 2.14 (s, 3H, CH₃CN), 6.45 s (2H, CH₂), 7.40–7.50 m br (15H, PC₆H₅); 7.91 s (2H, H₅), 8.51 s (2H, H₃). ¹³C{¹H} NMR (CD₃CN): δ 3.0 s (CH₃CN), 61.3 s (CH₂), 119.6 (s, CH₃CN), 130.8 d (³J_{P-C}: 10.3 Hz, C_m of PPh₃), 132.5 d (⁴J_{P-C}: 1.8 Hz, C_p of PPh₃), 131.4 d (¹J_{P-C}: 31.5 Hz, C_i of PPh₃), 135.2 d (²J_{P-C}: 16.4 Hz, C_o of PPh₃), 146.4 s (C₅), 154.2 s (C₃). ³¹P{¹H} NMR (CD₃CN, 293 K): δ 10.3 br. ³¹P{¹H} NMR (CDCl₃, 238 K): δ 9.1 d br (¹J(³¹P-^{107/109}Ag): 575.5 Hz).

AgNO₃:tz₂(CH₂):Pcy₃:MeCN (1:1:1:1) (7). Compound 7 was synthesized by the same procedure reported for 1 and was recrystallized by acetonitrile (0.51 g, 0.80 mmol, 80% yield). It is soluble in dmso, acetone, and acetonitrile and poorly soluble in chlorinated solvents. Mp: 130-132 °C. Anal. Calcd for C25H42-AgN₈O₃P: C, 46.81; H, 6.60; N, 17.47. Found: C, 46.58; H, 6.50; N, 17.53. $\Lambda_{\rm m}$ (CH₃CN, 10⁻³ M, 298 K): 140 Ω^{-1} cm² mol⁻¹. IR (Nujol, cm⁻¹): 3104 w, v(C_{arom}-H); 2293 w, 2250 w, 1511 m, ν (C····N + C···C); 521 m, 512 m, 488 w, 470 w, 455 w, 439 w, 429 w, 403 w, 387 w, 367 w, 346 w, 318 w, 294 w, 270 w, 261 w, 238 w. ¹H NMR (CD₃CN): δ 1.3 br (12H, C₆H₁₁), 1.8 br (12H, C_6H_{11}), 2.11 s (3H, C_6H_{11}), 2.19 s (3H, CH_3CN) 6.46 s (2H, CH_2), 7.92 s (2H, H_5), 8.52 s (2H, H_3). ¹³C{¹H} NMR (CD₃CN, 295 K): δ 26.8 s (C₆H₁₁), 27.85 d (C₆H₁₁), 31.7 br (C₆H₁₁), 32.4 d (C₆H₁₁), 60.8 (CH₂), 145.99 s (C_5), 153.7 s (C_3). ³¹P{¹H} NMR (CD₃CN, 295 K): 34.89 dd, (¹*J*(³¹P⁻¹⁰⁹Ag), 748 Hz; ¹*J*(³¹P⁻¹⁰⁷Ag), 648 Hz), 31.83 dd (¹*J*(³¹P-¹⁰⁹Ag), 529 Hz; ¹*J*(³¹P-¹⁰⁷Ag), 458 Hz).

AgClO₄:tz₂(CH₂):Pcy₃:MeCN (1:1:1:1) (8). Compound 8 was synthesized by the same procedure reported for 1 and was recrystallized from acetonitrile (0.51 g, 0.80 mmol, 80% yield). It is soluble in dmso, acetone, and acetonitrile and poorly soluble in chlorinated solvents. Mp: 179-181 °C. Anal. Calcd for C25H42-AgClN₇O₄P: C, 44.23; H, 6.24; N, 14.44. Found: C, 44.19; H, 6.50; N, 14.17. $\Lambda_{\rm m}$ (CH₃CN, 10⁻³ M, 298 K): 142 Ω^{-1} cm² mol⁻¹. IR (Nujol, cm⁻¹): 3117 w, 3039 w, v(Carom-H); 2288 w, 2255 m, v(CN); 1522 m, 1509 m, v(C---N + C---C); 519 br, 472 m, 459 m, 439 w, 431 w, 399 br, 386 m, 280 w, 235 br. ¹H NMR (CD₃CN): δ 1.3 br (12H, C₆H₁₁), 1.8 br (12H, C₆H₁₁), 2.10 s (3H, C₆H₁₁), 2.15 s (3H, CH₃CN), 6.46 s (2H, CH₂), 7.94 s (2H, H₅), 8.56 s (2H, H_3). ¹H NMR (CDCl₃): δ 1.4 br (12H, C₆ H_{11}), 1.8 br $(12H, C_6H_{11}), 2.16 \text{ s} (3H, C_6H_{11}), 2.15 \text{ s} (3H, CH_3CN), 6.58 \text{ s} (2H, C_6H_{11}), 2.15 \text{ s} (3H, CH_3CN), 6.58 \text{ s} (2H, C_6H_{11}), 2.15 \text{ s} (3H, CH_3CN), 6.58 \text{ s} (2H, C_6H_{11}), 2.15 \text{ s} (3H, CH_3CN), 6.58 \text{ s} (2H, C_6H_{11}), 2.15 \text{ s} (3H, CH_3CN), 6.58 \text{ s} (2H, C_6H_{11}), 2.15 \text{ s} (3H, CH_3CN), 6.58 \text{ s} (2H, C_6H_{11}), 2.15 \text{ s} (3H, CH_3CN), 6.58 \text{ s} (2H, C_6H_{11}), 2.15 \text{ s} (3H, CH_3CN), 6.58 \text{ s} (2H, CH_3CN), 6.$ CH₂), 7.96 s (2H, H_5), 8.72 s (2H, H_3). ¹H NMR (DMSO- d_6): δ 1.3 br (12H, C₆H₁₁), 1.8 br (12H, C₆H₁₁), 2.18 s (3H, C₆H₁₁), 2.08 s (3H, CH₃CN), 6.65 s (2H, CH₂), 8.05 s (2H, H₅), 8.84 s (2H, *H*₃). ¹³C{¹H} NMR (CD₃CN, 295 K): δ 26.6 s (*C*₆H₁₁), 27.72 d (C_6H_{11}) , 31.57 m (C_6H_{11}) , 31.86 br (C_6H_{11}) , 32.15 d (C_6H_{11}) , 32.36 d (C_6H_{11}), 60.65 (CH₂), 145.74 s (C_5), 153.47 s (C_3). ³¹P{¹H} NMR (CD₃CN, 295 K): δ 34.3 dd, (¹*J*(³¹P-¹⁰⁹Ag), 743 Hz; ${}^{1}J({}^{31}P-{}^{107}Ag, 643 Hz), 32.1 dd ({}^{1}J({}^{31}P-{}^{109}Ag), 529 Hz;$ ¹*J*(³¹P⁻¹⁰⁷Ag), 458 Hz). ³¹P{¹H} NMR (CD₃CN, 243 K): δ 33.6 dd, (¹*J*(³¹P-¹⁰⁹Ag), 734 Hz; ¹*J*(³¹P-¹⁰⁷Ag), 636 Hz), 31.1 dd $({}^{1}J({}^{31}P-{}^{109}Ag, 519 Hz; {}^{1}J({}^{31}P-{}^{107}Ag), 449 Hz).$

AgClO₄:tz₂(CH₂):AsPh₃:MeCN (1:1:1:2) (9). Compound 9 was synthesized similarly to 1 and was recrystallized by acetonitrile (0.48 g, 0.65 mmol, 65% yield). It is soluble in dmso, acetone, and acetonitrile and poorly soluble in chlorinated solvents. Mp: 264–267 °C. Anal. Calcd for C₂₇H₂₇AgAsClN₈O₄: C, 43.48; H, 3.65; N, 15.02. Found: C, 43.19; H, 3.50; N, 15.17. A_m (CH₃CN, 10⁻³ M, 298 K): 146 Ω⁻¹ cm² mol⁻¹. IR (Nujol, cm⁻¹): 3119 w, 3039 w, ν (C_{arom}-H); 2288 w, 2255 m, ν (CN); 1578 w, 1513 m ν (C…N + C…C); 482 m, 467 m, 395 w, 334 w, 324 w, 314 m,

compd	1	2	3	4	10
formula	C ₂₅ H ₂₄ AgN ₈ O ₃ P	C27H27AgAsN9O3	C27H27AgN9O3Sb	C27H27AgClN8O4P	C ₃₁ H ₃₃ Ag ₂ N ₁₄ O ₆ P
$M_{ m r}$	623.4	708.4	755.2	701.9	944.4
cryst system	triclinic	triclinic	triclinic	triclinic	triclinic
space group	P1 (No. 1)	$P\overline{1}$ (No. 2)	$P\overline{1}$ (No. 2)	$P\overline{1}$ (No. 2)	$P\overline{1}$ (No.2)
a (Å)	8.5328(8)	9.132(2)	9.1565(8)	9.321(3)	10.5051(7)
b (Å)	8.9443(9)	9.311(2)	9.2491(8)	9.590(3)	11.3410(8)
<i>c</i> (Å)	10.562(1)	19.544(2)	20.084(2)	19.689(6)	17.539(1)
α (deg)	75.501(2)	90.064(5)	87.842(2)	80.139(7)	76.802(2)
β (deg)	66.906(2)	89.671(5)	87.911(2)	78.830(7)	77.954(2)
γ (deg)	65.620(2)	61.464(4)	62.131(2)	61.248(7)	62.598(1)
$V(Å^3)$	671.6	1470	1502	1507	1793
$D_{\rm c} ({\rm g}~{\rm cm}^{-3})$	1.541	1.601	1.669	1.546	1.749
Z (f.u.)	1	2	2	2	2
$\mu_{Mo} (\mathrm{mm}^{-1})$	0.85	1.85	1.60	0.86	1.20
specimen (mm)	$0.35 \times 0.22 \times 0.16$	$0.75 \times 0.09 \times 0.08$	$0.60 \times 0.09 \times 0.06$	$0.29 \times 0.07 \times 0.05$	$0.25 \times 0.20 \times 0.16$
$T_{\min/\max}$	0.72	0.75	0.83	0.84	0.84
$2\theta_{\rm max}$ (deg)	75	75	75	63	75
N _{total}	13 585	30 311	31 110	21 595	31 385
$N_{\rm unique} (R_{\rm int})$	5409 (0.028)	15 163 (0.030)	15 439 (0.029)	9811 (0.063)	17 806 (0.024)
No	5328	11 334	10 763	5765	11 922
R ^a	0.028^{b}	0.031	0.034	0.046	0.038
$R_{ m w}{}^a$	0.034	0.037	0.035	0.040	0.041

 ${}^{a}R = \Sigma \Delta / \Sigma F_{o}^{2}$; $R_{w} = (\Sigma w \Delta^{2} / \Sigma w F^{2})^{1/2}$. b Friedel data preserved distinct, x_{abs} refining to -0.02(1).

279 w, 230 br. ¹H NMR (CD₃CN): δ 2.12 s (6H, *CH*₃CN), 6.46 s (2H, *CH*₂), 7.4–7.6 m (15H, C₆*H*₅), 7.94 s (2H, *H*₅), 8.56 s (2H, *H*₃). ¹H NMR (CDCl₃): δ 2.01 s (6H, *CH*₃CN), 6.48 s (2H, *CH*₂), 7.2–7.4 m (15H, C₆*H*₅), 7.92 s (2H, *H*₅), 8.58 s (2H, *H*₃). ¹H NMR (DMSO-*d*₆): δ 2.08 s (6H, *CH*₃CN), 6.62 s (2H, *CH*₂), 7.3–7.6 m (15H, C₆*H*₅), 8.03 (2H, *H*₅), 8.82 s (2H, *H*₃). ¹³C{¹H} NMR (CD₃CN): δ 60.76 (*CH*₂), 130.47, 131.34, 134.05, 135.08 (As*C*₆H₅), 145.9 s (*C*₅), 153.3 s (*C*₃).

AgNO3:tz2(CH2):P(o-tolyl)3 (2:2:1) (10). Compound 10 (0.450 g, 0.47 mmol, 95% yield) was synthesized by the same procedure reported for 1, by using 0.150 g of tz₂(CH₂)₂, 0.170 g of AgNO₃, and 0.156 g (0.5 mmol) of P(o-tolyl)₃. It is soluble in dmso, acetone, and acetonitrile and poorly soluble in chlorinated solvents. Mp: 213–214 °C. Anal. Calcd for C₃₁H₃₃Ag₂N₁₄O₆P: C, 39.43; H, 3.52; N, 20.76. Found: C, 39.73; H, 3.66; N, 20.59. Λ_m (CH_3CN, 1.0 \times 10^{-3} M, 298 K): 203 Ω^{-1} cm² mol⁻¹. IR (Nujol, cm⁻¹): 3130 w, 3050 w, v(C_{arom}-H); 1586 m, 1570 w, 1537 m, 1531 m, 1524 m, 1519 m, 1505 m, ν(C^{...}N + C^{...}C); 562 m, 556 m, 521 w, 511 w, 467 m, 460 m, 439 w, 411 w, 389 m, 373 w, 268 br, 246 w, 227 w, 213 w. ¹H NMR (CDCl₃): δ 2.54 s (9H, CH₃), 6.45 s (4H, CH₂), 6.82 m (4H, PC₆H₄), 7.44 m br (8H, PC₆H₄), 7.98 s (4H, *H*₅), 8.43 s (2H, *H*₃). ¹H NMR (CD₃CN): δ 2.43 s (9H, CH₃), 6.48 s (4H, CH₂), 6.85 m br (3H, PC₆H₄), 7.12 pt (3H, PC₆H₄), 7.45 m br (6H, PC₆ H_4), 7.93 s (4H, H_5), 8.55 s (2H, H_3). ¹³C{¹H} NMR (CD₃CN): δ 22.14 s, 22.48 s (CH₃), 60.79 s (CH₂), 128.0 d (³J_{P-C}: 6.85 Hz, PC_6H_4), 131.16 s (PC_6H_4), 132.8 d (${}^1J_{P-C}$: 7.2 Hz, PC₆H₄), 134.0 d (²J_{P-C}: 6.5 Hz, PC₆H₄), 143.4 s (PC₆H₄), 145.9 s (C₅), 153.6 s (C₃). ³¹P{¹H} NMR (CD₃CN, 293 K): δ -20.6 s. ³¹P{¹H} NMR (CDCl₃, 218 K): δ -22.5 dd (¹J(³¹P-Ag): 663 Hz).

AgNO₃:tz₂(CH₂):PPh₃:CH₃OH (1:1:1:2) (11). Compound 11 was synthesized by the same procedure reported for 1, using MeOH as solvent (0.33 g, 0.5 mmol, 50% yield). It is soluble in dmso, acetone, and acetonitrile. Mp: 155–160 °C. Anal. Calcd for C₂₅H₂₉-AgN₇O₅P: C, 46.45; H, 4.52; N, 15.17. Found: C, 46.32; H, 4.59; N, 15.46. $\Lambda_{\rm m}$ (DMSO, 1.0 × 10⁻³ M, 298 K): 40 Ω^{-1} cm² mol⁻¹. IR (Nujol, cm⁻¹): 3300 br, ν (OH); 3098 m, 3030 w, ν (C_{arom}-H); 1605 br, δ (OH); 1582 wm, 1514 m, ν (C···N + C···C); 522 s, 505 s, 490 s, 441 m, 426 m, 397 m, 279 w, 253 w, 224 w. ¹H NMR (DMSO-*d*₆): δ 3.3 s (6H, CH₃OH), 4.1 (2H, CH₃OH), 6.64 s (2H, CH₂), 7.30–7.55 m br (15H, PC₆H₅), 8.02 s (2H, H₅), 8.82 s (2H, H₃). ¹³C{¹H} NMR (DMSO- d_6): δ 48.5 s, 48.7 (s, CH₃OH), 59.1 s, 59.2 s (CH₂), 129.4 m, 130.9 s, 131.0 s, 131.5 s, 132.3 m (C_{arom} of PPh₃), 145.3 s, 145.4 s (C₅), 152.4 s, 152.5 s (C₃). ³¹P{¹H} NMR (DMSO- d_6 , 293 K): δ 12.5 d (¹J(³¹P-Ag): 687 Hz).

Structure Determinations. Full spheres of CCD area-detector diffractometer data were measured at ca. 153 K (Bruker AXS instrument; ω -scans; monochromatic Mo K α radiation, $\lambda =$ 0.710 73 Å), yielding N_{total} reflections. These merged to N_{unique} (Rint quoted) after "empirical"/multiscan absorption correction (proprietary software), N_0 with $F > 4\sigma(F)$ being considered "observed" and used in the full-matrix least-squares refinement, refining anisotropic displacement parameter forms for the nonhydrogen atoms, $(x,y,z,U_{iso})_{H}$, constrained at estimated values. Conventional residuals R and R_w on |F| at convergence are quoted (weights: $(\sigma^2(F) + 0.0004F^2)^{-1}$). Neutral atom complex form factors were employed within the Xtal 3.7 program system.²⁰ Pertinent results are given below and in Tables 2-4 and figures, the latter showing 50% probability amplitude displacement envelopes for the non-hydrogen atoms, hydrogen atoms, where shown, having arbitrary radii of 0.1 Å. In 4, the perchlorate was modeled with the oxygen atoms disordered over two sets of sites, occupancies refining to 0.680(7) and complement. Full CIF depositions (excluding structure factor amplitudes) have been made as Supporting Information.

Results and Discussion

Syntheses. Derivatives 1-9 were synthesized by the interaction of bis(1,2,4-triazol-1-yl)methane with the appropriate silver salts AgX in the presence of equimolar EPh₃ (E = P, As, or Sb) or Pcy₃ in acetonitrile solution (eq 1). No adducts were afforded under the same conditions when silver(I) halides as acceptors or P(2,4,6-Me₃C₆H₂)₃ as P-donors were employed. The adduct **10**, (AgNO₃):tz₂(CH₂): P(o-tolyl)₃ (2:2:1), was obtained in high yield when a 2:2:1 molar ratio was employed but also precipitates from the

⁽²⁰⁾ Hall, S. R., du Boulay, D. J., Olthof-Hazekamp, R., Eds. *The Xtal 3.7 System*; University of Western Australia: 2001.

reaction solution when a 1:1:1 molar ratio has been used.

$$ntz_{2}(CH_{2}) + nAgX + mER_{3} + xMeCN \rightarrow$$

$$(AgX):tz_{2}(CH_{2}):ER_{3}:CH_{3}CN (n:n:m:x) (1)$$

1, n = 1, m = 1, x = 1, $X = NO_3$, E = P, R = Ph; 2, n = 1, m = 1, x = 2, $X = NO_3$, E = Sb, R = Ph

3, n = 1, m = 1, x = 2, $X = NO_3$, E = As, R = Ph; **4**, n = 1, m = 1, x = 2, $X = CIO_4$, E = P, R = Ph

5, n = 1, m = 1, x = 0, $X = O_3SCF_3$, E = P; R = Ph; **6**, n = 1, m = 1, x = 0, $X = NO_2$, E = P, R = Ph

7, n = 1, m = 1, x = 1, $X = NO_3$, E = P, R = cy; 8, n = 1, m = 1, x = 1, $X = ClO_4$, E = P, R = cy

9,
$$n = 1$$
, $m = 1$, $x = 1$, $X = ClO_4$, $E = As$, $R = cy$

It is noteworthy that the stoichiometries found for 1-10are generally independent of the ligand-to-metal ratio employed, although if a large excess of the ER₃ donor was used the well-known $(ER_3)_xAgX$ species were formed. The order of mixing and the reaction times are important: when a solution of the ligand tz₂(CH₂) was added to a preprepared solution of AgX and EPh₃, coordination of the N-donor to the silver appears not to happen, (EPh₃)_xAgX species always being obtained. By contrast, if the addition of $tz_2(CH_2)$ to AgX solutions was made simultaneously with that of ER₃, derivatives 1-10 were formed in quantitative yields. In addition, if the solutions of tz₂(CH₂), AgX, and ER₃ were evaporated 1 h after the mixing, (ER₃)_xAgX were the only compounds identified. The best way to synthesize 1-10 is by slow diffusion of an acetonitrile solution of $tz_2(CH_2)$ and EPh₃ in a solution of AgX, followed by slow evaporation of the solvent. All compounds are prone to absorb molecules of solvent from the CH₃CN solution, from which they can be recrystallized.

When the reaction between $tz_2(CH_2)$, AgNO₃, and PPh₃ was carried out in methanol, the polynuclear adduct (AgNO₃): $tz_2(CH_2)$:PPh₃:CH₃OH (1:1:1:2) (**11**) appears to be formed. It is interesting to note that this compound is not immediately soluble in acetonitrile, whereas when **11** is left stand in acetonitrile solution for 2 days, it dissolves and, after evaporation, crystals of **1** are formed.

Most of the derivatives 1-10 are poorly soluble in chlorinated solvents, in contrast to previously described polymeric complexes of tz₂(CH₂), but are more soluble in acetonitrile and in oxygenated solvents such as acetone and DMSO.¹⁷ It is interesting to note that the nitrate complexes 1-3 exhibit conductivity values in acetonitrile or DMSO typical of electrolytic species according to eq 2, whereas the nitrite compound **6** is a nonelectrolyte in acetone, suggesting strong coordination of the counteranion also in solution. The perchlorate **4** and the triflate **5** exhibit conductivity values typical of partly ionized species, suggesting partial displacement of the counterion in solution or ion-pair formation. By contrast, the Pcy₃ derivatives exhibit the higher conductivity values, suggesting that the sterically hindered phosphine

inhibits the nitrate and perchlorate coordination in solution.

$$(AgX):tz_{2}(CH_{2}):ER_{3}:MeCN (n:n:m:x) + yMeCN \rightarrow [Ag_{n}(ER_{3})_{m}(MeCN)_{x+y}] + nX^{-} + ntz_{2}(CH_{2}) (2)$$

The existence of a very weak interaction between the nitrate and silver in 1-3 has been confirmed from X-ray studies (see below), which indicated Ag-O_{nitrate} distances longer than those found in the parent polymeric compounds not containing EPh₃. The conductivity measurements suggest that here the Ag-O_{perchlorate} interaction is stronger than the Ag-O_{nitrate}.

In the IR spectra of all compounds the ring breathing vibrations fall between 1530 and 1510 cm⁻¹. In the IR spectra of 1-3, which can be considered four-coordinate, the absorptions due to NO₃ are typical of an ionic group.²¹ Also the perchlorate bands are similar to those found in ionic perchlorato species, although the presence of some shoulders may indicate weak interaction between the perchlorate and the metal.²² The nitrite behavior in $\mathbf{6}$ is not well defined due to the presence in the solid spectra of several overlapping absorptions in the region 900-1500 cm⁻¹,²³ but the existence of Ag-O interactions seems to be supported by the presence of weak to medium absorptions in the range 150-450 cm⁻¹.²⁴ The ionic CF₃SO₃⁻ group has lower symmetry (C_{3v}), but the absence of splitting of the band at 1261 cm⁻¹ is consistent with the presence of a triflate of that form in 5.2^{5} The absence of coordinated MeCN, the poor solubility, and the presence of only one P-donor suggest for 5 a cationic polymeric array with the $tz_2(CH_2)$ perhaps coordinated not only through N(4) but also with the N(2) as previously found.17

The strong absorption bands at ca. 1740 and 1270 cm⁻¹ assigned to the triazole ring stretching vibrations for the free $tz_2(CH_2)$ ligand are also present in the spectra of the complexes but are rather weak, these absorption bands being shifted to ca. 1750 and 1279 cm⁻¹ in complex **1** and to ca. 1745 and 1275 cm⁻¹ in complex **10**.

In the IR spectra of 1-4 and 7-9 the vibrations of the acetonitrile molecules are always found at ca. 2290 and 2250 cm⁻¹. The lower frequency band is assigned to the C=N stretching vibration, with that at higher frequency to the ν_3 + ν_4 combination band, mixed with C=N stretching.²⁶ Comparison of the absorptions in 1-4 and 7-9 with those of free MeCN indicates no significant shift upon coordination. In the far-infrared region of 1-11 broad small peaks were found at ca. 270 and 230 cm⁻¹ which are comparable with those for Ag-N vibrations as given in the literature.²⁷

⁽²¹⁾ Addison, C. C.; Logan, N.; Wallwork, S. C.; Garner, C. D. Q. Rev. 1971, 25, 289–322.

⁽²²⁾ Rosenthal, M. R. J. Chem. Educ. 1973, 50, 331-335.

⁽²³⁾ Nakamoto, K.; Fujita, J.; Murata, H. J. Am. Chem. Chem. Soc. 1958, 20, 4817–4823.

⁽²⁴⁾ Cornilsen, B. C.; Nakamoto, K. J. Inorg. Nucl. Chem. 1974, 36, 2467– 2471. Goodgame, D. M. L.; Goodgame, M.; Hayward, P. J.; Rayner-Canham, G. W. Inorg. Chem. 1968, 7, 2447–2451.

⁽²⁵⁾ Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed.; Wiley & Sons: New York, 1986.

⁽²⁶⁾ Reedijk, J.; Zuur, A. P.; Groeneveld, W. L. Recl. Trav. Chim. 1967, 86, 1127–1137.

	1	2	3	4			
	Distances (Å)						
Ag-N(14)	2.281(3)	2.310(2)	2.299(2)	2.323(3)			
Ag-N(24*)	2.308(3)	2.273(2)	2.269(2)	2.286(3)			
Ag-E	2.3807(7)	2.4751(5)	2.5995(4)	2.371(1)			
Ag-N(1)	2.729(6)	2.631(2)	2.616(2)	2.585(4)			
Ag-O(1)	3.186(4)	2.940(2)	2.914(2)	2.951(4)			
	Angles (deg)						
N(14)-Ag-N(24*)	100.59(9)	95.99(6)	96.76(7)	96.2(1)			
N(14)-Ag-E	133.86(6)	121.92(4)	120.74(5)	131.68(9)			
N(14) - Ag - N(1)	95.2(1)	86.31(6)	84.87(6)	85.3(1)			
N(14)-Ag-O(1)		85.38(5)	86.27(6)	77.1(6)			
N(24*)-Ag-E	125.38(7)	140.84(4)	140.60(4)	131.58(8)			
N(24*)-Ag-N(1)	84.9(1)	87.72(6)	88.21(8)	89.7(1)			
N(24*)-Ag-O(1)		76.00(6)	78.44(7)	80.1(2)			
E-Ag-N(1)	92.8(1)	102.96(4)	105.54(5)	99.52(9)			
E-Ag-O(1)		96.11(3)	91.47(4)	101.4(1)			
N(1)-Ag-O(1)		160.82(6)	162.99(7)	158.5(1)			
Ag-N(1)-C(1)	138.7(3)	154.6(2)	156.0(2)	159.9(4)			
Ag = N(14) = C(13)	126.0(2)	131.0(1)	132.2(1)	125.3(2)			
Ag = N(14) = C(15)	129.4(3)	125.2(1)	124.4(1)	129.0(3)			
$Ag^{*}-N(24)-C(23)$	130.9(2)	126.0(1)	124.7(2)	134.4(3)			
$Ag^{*}-N(24)-C(25)$	125.9(3)	129.0(1)	129.2(1)	120.6(2)			
N(11)-C(0)-N(21)	111.4(2)	111.3(1)	111.1(2)	112.3(3)			
C_2N_3/C_2N_3 Int	erplanar Di	hedral Angl	es (deg)				
$\theta_{1/2}$	70.8(1)	73.08(7)	73.86(9)	68.6(2)			
Silver Deviations from the C_2N_3 and NO ₃ Planes (Å)							
δ_{tz_1}	0.379(6)	0.150(3)	0.169(4)	0.521(7)			
δ_{tz_2}	0.171(6)	0.447(3)	0.548(4)	0.406(6)			
$\delta_{ m NO_3}$	1.33(1)	0.564(6)	0.196(7)				
Torsion Angles (deg)							
N(21)-C(0)-N(11)-N(12)	86.4(3)	83.2(2)	83.1(2)	80.7(4)			
N(11)-C(0)-N(21)-N(22)	-62.1(4)	-80.4(2)	-80.1(2)	-77.1(4)			

^a Asterisked atoms are related by a unit translation in the polymer string.

The ¹H and ¹³C NMR spectra of the complexes in CD_3CN and $DMSO-d_6$ show chemical shifts for the protons and carbons of the ligands in the complexes which are not very different from those of the free ligand, presumably due to some partial dissociation of the complexes in solution. A slightly downfield shift was generally found for all carbons and for the H3 and bridging CH₂ protons, whereas H5 are always shifted to high field. These data indicate that extensive dissociation of 1-11 occurs in CD₃CN and DMSO- d_6 , suggesting weaker interaction between the ligands and the silver(I) acceptors in these solvents. In some cases it has been possible to record the ¹H spectra in CDCl₃ solution; in this solvent a greater chemical shift was found with respect to the free tz₂CH₂, suggesting at least partial formation of complexed species in solution. The ³¹P NMR spectra also indicate that 1, 3-8, and 10 and 11 dissociate in solution, yielding not only species of formula $PR_3Ag(MeCN)^+$ (the most abundant species in all cases as confirmed also by ESI-MS data; see below) but also (PR₃)₂Ag⁺ and (PR₃)₂Ag- $(MeCN)^+$ as confirmed by the Ag-P coupling constant values. Silver-phosphorus coupling constants have been used by many workers to examine the coordination geometry around the silver center. The two values observed for compound 1 (617 and 484 Hz) agree well with that seen for other two-coordinate species containing one and two unidentate triorganophosphines, respectively.²⁸

ESI-MS has proved to be a powerful tool for the analysis of ionic species in solution, several class of chemical

 Table 4.
 Selected Geometries of 10^a

param	atoms	param				
Distances (Å)						
2.216(2)	Ag(2)-N(124)	2.134(2)				
2.565(3)	$Ag(2) - N(224^{i})$	2.134(2)				
2.3895(6)	Ag(2)-O(11 ⁱⁱ)	2.731(2)				
2.672(2)	Ag(2)-O(12 ⁱⁱ)	2.755(2)				
Angles (deg)						
90.09(8)	$N(124) - Ag(2) - N(224^{i})$	169.21(9)				
151.97(6)	$N(124) - Ag(2) - O(11^{ii})$	104.08(9)				
90.11(6)	$N(124) - Ag(2) - O(12^{ii})$	79.23(8)				
109.23(5)	$N(224^{i}) - Ag(2) - O(11^{ii})$	86.25(7)				
116.75(7)	$N(224^{i}) - Ag(2) - O(12^{ii})$	110.69(7)				
98.49(5)	$O(11^{ii}) - Ag(2) - O(12^{ii})$	46.54(6)				
133.7(1)	Ag(2)-N(124)-C(123)	125.2(2)				
123.0(1)	Ag(2)-N(124)-C(125)	130.8(2)				
	Distan 2.216(2) 2.565(3) 2.3895(6) 2.672(2) Angle 90.09(8) 151.97(6) 90.11(6) 109.23(5) 116.75(7) 98.49(5) 133.7(1)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				

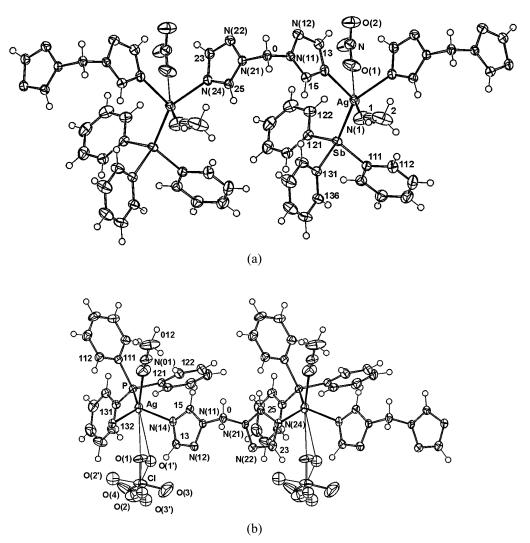
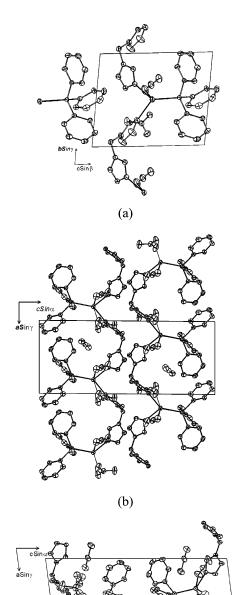
^{*a*} The interplanar dihedral angles between the two C₂N₃ rings of the ligands are 84.9(1), 80.2(1)° (ligands 1, 2); $\delta(\text{Ag}(1,2))$ from the two planes of ligand 1 are 0.070(4) and 0.195(4) Å, and Ag(1,2ⁱⁱⁱ) from those of ligand 2 are 1.675(4) and 0.085(4) Å. Transformations i–iii of the asymmetric unit are the following: x - 2, y + 1, z; x - 1, y + 1, z; x + 2, y - 1, z. Torsion angle pairs for each ligand (as in Table 2) are 70.9(3), 51.2(3) and -44.8(4), $-61.8(3)^{\circ}$.

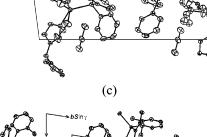
compounds having been characterized since its introduction. Useful information regarding stoichiometry has also been achieved for the solution speciation of coordination compounds augmenting that available from spectroscopic techniques. In this context, ESI-MS spectra were recorded for 1-4 and 6-11 by dissolving small quantities of crystals in acetonitrile to assess the nature of the complexes in solution. The mass spectra of these compounds reveal the presence of a variety of species. For example, in the case of 4, the following ion peaks were found in the ion positive spectrum: m/z 147.9 [(MeCN)Ag]⁺ (5), 188.9 [(MeCN)₂Ag]⁺ (10), 410.0 [PPh₃(MeCN)Ag]⁺ (100), 520 [PPh₃(tz₂(CH₂))- $Ag]^{+}(15), 632.5 [(PPh_3)_2Ag]^{+}(65), the isotopic distribution$ of these species being in accord with the calculated composition. These data indicate that these derivatives mainly undergo loss of the anionic X-group and of the neutral N-donor ligand owing to weak interaction between $tz_2(CH_2)$ with silver in solution, whereas MeCN does itself show ligating properties toward silver(I) ions, as confirmed from the peaks at m/z 147.9 and 188.9. It is interesting to note that a small peak due to simultaneous coordination of the ER_3 and $tz_2(CH_2)$ was found in the ESI-MS spectra of all PPh₃ derivatives but not in the spectra of compounds containing a more sterically hindered phosphine such as 7, **8**, and **10** or in the EPh₃ (E = As or Sb) derivatives. No species containing more than two ER₃ ligands were detected, whereas dimeric species of formula $[(ER_3)_2Ag_2X]^+$ were observed only when $X = NO_3$.

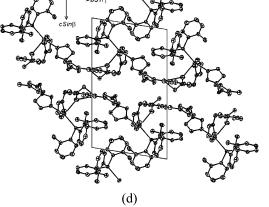
To optimize the conditions for preparation of the polynuclear species 1-11, we have also recorded ESI-MS spectra of mixture containing $tz_2(CH_2)$, ER₃, and AgX in different molar ratio. We have found that the peak due to

 ⁽²⁷⁾ Su, C. C.; Hwang, T.-T.; Wang, O. Y.-P.; Wang, S. L.; Liao, F.-L. *Trans. Met. Chem.* **1996**, *21*, 541–545. van Albada, G. A.; Smeets, W. J. J.; Spek, A. L.; Reedijik, J. *Inorg. Chim. Acta* **1999**, 288, 220–225.

Muetterties, E. L.; Alegranti, C. W. J. Am. Chem. Soc. 1972, 94, 6386–6391. Engelhardt, L. M.; Healy, P. C.; Patrick, V. A.; White, A. H. Aust. J. Chem. 1987, 40, 1783–1780. Camalli, M.; Caruso, F. Inorg. Chim. Acta 1987, 127, 209–213.


Figure 1. (a, b) Sections of the one-dimensional polymers of 2 and 4 projected normal to the polymer axis.


 $[ER_3(tz_2(CH_2))Ag]^+$ species generally increases with increasing $tz_2(CH_2):AgX$ molar ratio, the maximum intensity being found when the ratio is 8:1. In addition the intensity of the $[ER_3(tz_2(CH_2))Ag]^+$ signal decreases with increasing $ER_3:AgX$ molar ratio, the maximum being detected when the ratio is 1:1.5. If a 1:2 $ER_3:AgX$ ratio was employed, the solutions were not enough stable to be investigated. The peak due to $[ER_3(tz_2(CH_2))Ag]^+$ species generally reaches its maximum intensity when a 16:2:1 (tz_2)CH₂:AgX:ER₃ molar ratio was employed.

X-ray Diffraction Studies: Discussion. The results of the "low"-temperature single-crystal X-ray structure determinations of 1-4 and 10 are consistent with their formulation as AgX:ER₃:L:MeCN with 1:1:1:1 (1), 1:1:1:2 (2-4), and 2:1:2:0 (10) stoichiometries, respectively, those of 2-4 being of the form 1:1:1:1(+1) where the acetonitrile molecules are partitioned into coordinated and uncoordinated types respectively. In 1, the anion approach to the metal is distant, also true of one of the anions in 10. In the latter, the basis of the structure is a two-dimensional polymer, in the remainder a one-dimensional polymer, the polymers being cationic or neutral, depending in some cases on how their relationships to associated anions are viewed. Geometries are presented in Tables 3 and 4, the polymers being depicted in Figures 1-3. A common feature of all polymers is the linking of successive silver atoms by the tz₂CH₂ ligands, which behave as bridging groups rather than (e.g.) chelates or unidentates, with N(n4) as donors. Torsion angles in the bonds to either side of the central carbon N-C-N-N are of opposite sign (i.e. H(15,25) lie adjacent) in the ligands of all compounds except **10**, where they are the same. In all structures, one of the above formula units as appropriate, devoid of crystallographic symmetry, comprises the asymmetric unit of the structure.

In each of 1-4, the silver atom may be regarded as fourcoordinate, without any pair of ligands being dominant, quasi-trans, in their interactions. The Ag-N(tz) distances are closely comparable (range: 2.269(3)-2.323(3) Å) within a particular (MeCN)AgEN(tz)N(tz') array, the principal variant being Ag-E, short for Ag-P and long for Ag-Sb. In 1-3, this trend is opposed by those in the other bonds, Ag-N(tz) shortening slightly, Ag-N(MeCN) more so, with concomitant straightening of the Ag-N-C angle. These changes are accompanied by the approach of one of the nitrate oxygen atoms. The structures of 1-4 are all very similar with respect to lattice dispositions (Figure 2). The structure of **1** is

Figure 2. (a-d) Unit cell projections of **1**, **3**, **4**, and **10** down *a*, *b*, *b*, and *a*, respectively.

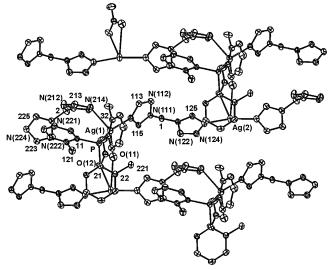


Figure 3. Section of the two-dimensional polymer of 10 projected normal to the plane of the polymer.

unusual, being in space group P1, and unsolvated, with parallel polymer strands. In 2–4 the lattice is $P\overline{1}$ with the introduction of inversion-related strands between and solvent molecules which, interestingly, appear to lie "within" each strand here—but not in 1. 2 and 3 are isomorphous; the structure of 4 is very similar. In the latter, the perchlorate approaches the metal at a slightly shorter distance than that found in the analogous nitrate in the principal component of the disordered array; in the minor component Ag–O' is longer at 3.29(1) Å. In this complex, perhaps because of a different anion profile, Ag–NCMe is straighter with Ag–N correspondingly shorter.

Tris(*o*-tolyl)phosphine is a ligand with a bulkier profile than (P/E)Ph₃, and it comes as no surprise to find the adduct involving it to be of a different form, albeit still polymeric. Here, devoid of solvent, one of the two independent silver atoms has an environment not unlike those of the preceding, except that the acetonitrile may perhaps be regarded as supplanted by a less voluminous quasi-chelate approach of the nitrate (Ag(1)–O(13) 3.126(2) Å); Ag(1)–N(tz) are unsymmetrical. The environment of Ag(2) is quite different and unique among the present arrays, although not unusual in the sense that, devoid of a phosphine donor, it reverts to a classical quasi-linear N–Ag–N system, perturbed by off-axis oxygen contacts, one of the latter serving to link, via a bridging interaction, strands of the form \cdots Ag(1)(L)Ag(2)-(L)Ag(1) \cdots in the second dimension (Figure 3).

Conclusions

The compounds presented herein are a first step in the synthesis of new polynuclear coordination compounds. We are currently investigating the use of metal ions other than Ag^{I} , as well as changing the ancillary ligands and the anions to synthesize materials that can be used as host/guest molecules. This work demonstrates that it is possible to prepare and isolate new coordination polymers which contain a bridging N-donor ligand such as $tz_2(CH_2)$, a triorganophosphine, a solvent molecule (coordinated or solvate), and

New Coordination Polymers from tz₂(CH₂)

finally an O-donor counterion. Such coordination compounds, indefinitely stable in the solid state, cannot persist in coordinating solvents such as DMSO or MeCN. It is worth noting that here the ligand $tz_2(CH_2)$, in contrast to those previously described in its organotin(IV) compounds, coordinates always through the N(4) atoms but not the N(4). Sterically hindered P-donors such as P(o-tolyl)₃ allow the synthesis of polymers of different stoichiometry or inhibit the counterion coordination (Pcy₃). A different counterion or a different solvent of crystallization can produce polynuclear species having different properties not only in the solid state but also in solution (e.g. conductivity, solubility).

Acknowledgment. We thank the University of Camerino, Cooperlink (MIUR), and the CARIMA Foundation for financial help.

Supporting Information Available: Four X-ray crystallographic files, in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

IC0353413